Kinetics and Mechanism of Oxidation of Ascorbic Acid by Manganese(III) in Aqueous Acidic Perchlorate Media

By Ezio Pelizzetti,* Edoardo Mentasti, and Edmondo Pramauro, Istituto di Chimica Analitica, Via P. Guiria 5, 10125 Torino, Italy

The kinetics and mechanism of oxidation of ascorbic acid (H₂A) by Mn^{III} in aqueous acidic perchlorate media have been investigated by means of stopped-flow spectrophotometry. The rate law is of the form $-\frac{1}{2} d[Mn^{III}]/dt =$ $(k_{a} + k_{b}[H^{+}]^{-1})[Mn^{III}][H_{2}A]$ where the two terms have been assigned to reactions involving the undissociated form of ascorbic acid with Mn³⁺(aq) and [Mn(OH)]²⁺(aq) respectively. Comparison with similar reactions involving benzenediols suggests some conclusions on the reduction potentials and the oxidation mechanism of ascorbic acid.

A CONSIDERABLE amount of data concerning the oxidation of diol derivatives is now available in the literature. In particular, oxidations of catechols, quinols, and biphenyldiol by aquametal ions [such as CoIII, MnIII, Tl^{III} , and V^{V} ¹ and by complexes such as [Fe^{III}L₃] $(L = phenanthroline or bipyridyl derivative)^2$ or hexachloroiridate(IV)³ have been studied. L-Ascorbic acid, which is a well known compound of biological interest, exhibits a vicinal diol structure which can be oxidized to the corresponding dehydroascorbic acid according to equation (i). The oxidation of ascorbic acid by several

oxidizing ions has been investigated,⁴ and recently we studied the reaction between ascorbic acid and a series of $[Fe^{III}L_3]$ derivatives ⁵ in order to estimate some of the characteristic parameters of this compound. Richman et $al.^6$ investigated the reaction of ascorbic acid with Co^{III} in perchlorate media, and some conclusions have been drawn by comparison with data concerning oxidation of aromatic diols by Co^{III}.

In this paper we present the results of an investigation of the oxidation of ascorbic acid by Mn^{III} in perchlorate media in order to achieve additional information on these systems.

¹ (a) E. Pelizzetti and E. Mentasti, J.C.S. Dalton, 1976, 2222; (a) E. Pelizzetti, E. Mentasti, and G. Giraudi, Inorg. Chim. Acta, 1975, 15, L1;
(c) E. Pelizzetti and E. Mentasti, J. Inorg. Nuclear Chem., 1976, 38, 2005;
(d) E. Pelizzetti, E. Mentasti, and G. Saini, Gazzetta, 1976, 106, 605.

² (a) E. Pelizzetti and E. Mentasti, Z. phys. Chem. (Frankfurt), 1977, **105**, 21; (b) E. Mentasti and E. Pelizzetti, Internat. J. Chem.

Kinetics, 1977, 9, 215. ³ E. Pelizzetti, E. Mentasti, and C. Baiocchi, J. Phys. Chem., 2020 D. D. Mantasti, E. Polizzetti, and C. Baiocchi 1976, 80, 2979; E. Mentasti, E. Pelizzetti, and C. Baiocchi, J.C.S. Dalton, 1977, 132.

EXPERIMENTAL

Reagents.—Manganese(III) was prepared by anodic oxidation of manganese(II) perchlorate (obtained by dissolution of $Mn[CO_3]$ in aqueous perchloric acid). Ascorbic acid (E. Merck) solutions were prepared immediately before use. Perchloric acid and sodium perchlorate were used for adjusting the acidity and ionic strength $(I = 3.0 \text{ mol dm}^{-3})$; twice distilled water was used.

Procedure.—Manganese(III) and Mn^{II} were estimated as previously described.7 The reaction rates were followed at 470 nm (wavelength of maximum absorption of Mn^{III}) with a Durrum-Gibson stopped-flow spectrophotometer. Rate constants were calculated by a weighted-least-squares method. The acidity range investigated was 0.50-2.00 mol dm^{-3} (HClO₄) and the kinetic runs were carried out at $\rm [Mn^{III}]=2.0\,\times\,10^{-4}$ and $\rm [H_2A]=2\,\times\,10^{-4}-4\,\times\,10^{-4}$ mol dm⁻³. A large excess of Mn^{II} over Mn^{III} (>100-fold) was present in order to avoid disproportionation of Mn^{III}. The experiments were carried out at 6.0, 20.0, and 35.0 °C.

RESULTS

Stoicheiometry.-The stoicheiometric measurements were carried out by adding an excess of Mn^{III} to a solution of ascorbic acid and estimating the Mn^{III} remaining. The results indicate that the overall reaction can be represented as in (1) where A = dehydroascorbic acid.

$$2 \operatorname{Mn^{III}} + \operatorname{H}_{2} A \longrightarrow 2 \operatorname{Mn^{II}} + A + 2 \operatorname{H}^{+}$$
(1)

Kinetics.—Plots of $\log\{(2[H_2A]_0 - [Mn^{III}])/([Mn^{III}]_0 -$ $[Mn^{III}])$ against time were linear for at least three halflives, indicating that the overall order of the reaction is two,

⁴ U. S. Mehrotra, M. C. Agrawal, and S. P. Mushran, J. Phys. Chem., 1969, **73**, 1996; J. Inorg. Nuclear Chem., 1970, **32**, 2325;
S. P. Mushran, M. C. Agrawal, and R. Sanchi, J.C.S. Dalton,
1974, 1460; K. Kustin and D. L. Toppen, Inorg. Chem., 1973, **12**, 1404; M. M. Taqui-Khan and A. E. Martell, J. Amer. Chem.
Soc., 1967, **89**, 4179; 1968, **90**, 3386, 6011; 1969, **91**, 4668.
⁵ E. Pelizzetti, E. Mentasti, and E. Pramauro, Inorg. Chem.,
1076, **15**, 2208.

1976, **15**, 2898.

⁶ R. A. Richman, R. L. Sorensen, K. O. Watkins, and G. Davies, *Inorg. Chem.*, 1977, 16, 1570.
 ⁷ E. Mentasti, E. Pelizzetti, E. Pramauro, and G. Giraudi,

Inorg. Chim. Acta, 1975, **12**, 61.

and the order with respect to the concentration of each reagent is unity. Second-order rate constants, k_0 , calcullated from 2.303(gradient)/(2[H₂A]₀ - [Mn^{III}]₀), are collected in Table 1. The dependence of the reaction rate on

TABLE 1

Second-order rate constants, 10⁻⁴k₀/dm³ mol⁻¹ s⁻¹, at different acidities and temperatures (I = 3.0 mol)dm⁻³) for the oxidation of ascorbic acid by Mn^{III}

	[H+]/mol dm ⁻³						
θ _c /°C	0.40	0.60	0.80	1.00	1.50	2.00	
6.0	2.1	1.8_{5}	1.6	1.4_{5}	1.2	1.0_{5}	
20.0	3.7	3.3	3.0	2.7	2.3_{5}	2.0_{5}	
35.0	9.1	8.3	7.5	6.95	6.0	5.3	

acidity can be interpreted in terms of the manganese(III) species $\{Mn^{3+}(aq) \text{ and } [Mn(OH)]^{2+}(aq)\}$ and the ascorbic acid species (H₂A and HA⁻) present in solution. Thus reactions (2)—(8) can be taken into account. In reactions

$$Mn^{3+}(aq) \stackrel{K_h}{\clubsuit} [Mn(OH)]^{2+}(aq) + H^+ \qquad (2)$$

$$H_2A \stackrel{K_a}{\longrightarrow} HA^- + H^+$$
(3)

$$Mn^{3+}(aq) + H_2A \xrightarrow{\kappa_1} Mn^{2+}(aq) + Radical$$
 (4)

$$[Mn(OH)]^{2+}(aq) + H_2A \xrightarrow{n_2} Mn^{2+}(aq) + Radical$$
(5)

$$Mn^{3+}(aq) + HA^{-} \xrightarrow{\kappa_{3}} Mn^{2+}(aq) + Radical$$
 (6)

$$[Mn(OH)]^{2^+}(aq) + HA^- \xrightarrow{\kappa_4} Mn^{2^+}(aq) + Radical$$
(7)

$$Mn^{III} + Radical \xrightarrow{fast} Mn^{2+}(aq) + A$$
 (8)

(4)—(8) protons are omitted since the radical can exhibit different degrees of protonation. Application of the steadystate assumption to the radical concentration leads to the rate law (9). Since $K_a[H^+]^{-1} \ll 1$ in equation (10),⁵ and a

$$-\frac{1}{2} d[Mn^{III}]/dt = -d[H_2A]/dt = k_0[Mn^{III}][H_2A]$$
 (9)

where

$$\begin{split} k_{0} &= \\ \frac{(k_{1} + k_{2}K_{\rm h}[{\rm H}^{+}]^{-1} + k_{3}K_{\rm a}[{\rm H}^{+}]^{-1} + k_{4}K_{\rm h}K_{\rm a}[{\rm H}^{+}]^{-2})}{(1 + K_{\rm h}[{\rm H}^{+}]^{-1}) \ (1 + K_{\rm a}[{\rm H}^{+}]^{-1})} \quad (10) \end{split}$$

plot of $k_0([H^+] + K_h)$ against $[H^+]$ gives a satisfactory

intercept (see Figure and Table 2 where the activation parameters are also reported).

Plot of $k_0([H^+] + K_b)$ against $[H^+]$ for reaction of ascorbic acid with Mn^{III} at 6.0 (\bigcirc) and 35 °C (\bigcirc)

DISCUSSION

In recent papers ¹⁻³ the mechanism of redox reactions involving organic substrates and metal-ion complexes have been discussed in terms of Marcus theory.⁹ although in some cases the relation between the free energy of activation and the free energy of reaction does not allow a definite choice to be made between an inner- or an outer-sphere mechanism.¹⁰ The functional form of the Marcus theory is as in equations (11) and (12) where Z is

$$\Delta G^{\ddagger} = w_{\rm r} + \lambda [1 + (\Delta G^{\Theta'}/\lambda)]^2/4 \tag{11}$$

$$k = Z \exp(-\Delta G^{\ddagger}/RT) \tag{12}$$

the collision number in solution (assumed to be 10^{11} dm³ mol⁻¹ s⁻¹) and $\lambda = 2(\Delta G_{11}^{\ddagger} + \Delta G_{22}^{\ddagger})$ where ΔG_{11}^{\ddagger} and ΔG_{22}^{\ddagger} are the free energies of activation of the selfexchange reactions for the individual reactant couples; $\Delta G^{\Theta'} = \Delta G^{\Theta} + w_{\rm p} - w_{\rm r}$, where ΔG^{Θ} is the standard free energy of reaction for the prevailing medium and temperature and w_r and w_p are the coulombic terms for

TABLE 2

Rate constants and activation parameters for the reaction of ascorbic acid with Mn^{III}

	$\theta_{c}/^{\circ}C$			ΔH^{\ddagger}	ΔS^{\ddagger}
	6.0	20.0	35.0	kcal mol ⁻¹	cal K ⁻¹ mol ⁻¹
$10^{-3}k_1/\text{dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$	$3.0~\pm~0.6$	$6.0~\pm~1.1$	$13~\pm~3$	8.6 ± 1.8	$-12~\pm~6$
$10^{-4}(k_2K_h + k_3K_a)/s^{-1}$	$1.9~\pm~0.1$	4.2 ± 0.3	14 ± 1	12.0 ± 0.7	$3~\pm~2$
$10^{-4}k_2/\mathrm{dm^3\ mol^{-1}\ s^{-1}}$	$3.4~{\overline{\pm}}~0.2$	5.3 ± 0.4	11.5 ± 1	$7.1~\pm~0.7$	$-12~\pm~2$

straight line, it is suggested that path (7) is negligible $(K_{\rm h} \text{ was calculated from literature data});$ ⁸ thus k_1 and $(k_2K_h + k_3K_a)$ can be obtained from the gradient and

 ⁸ C. F. Wells and G. Davies, J. Chem. Soc. (A), 1967, 1858.
 ⁹ R. A. Marcus, J. Phys. Chem., 1968, 72, 891 and refs. therein.

bringing together the reactants and products. (Owing to the high ionic strength, these work terms have been

¹⁰ R. G. Wilkins, 'The Study of Kinetics and Mechanisms of Reactions of Transition Metal Complexes, Allyn and Bacon, Boston, 1974; K. M. Davies and J. E. Earley, *Inorg. Chem.*, 1976, 15, 1074.

neglected.) Application of equation (11) to the oxidation of ascorbic acid by [Fe^{III}L₃], which involves a reaction with the dissociated form of ascorbic acid and where an outer-sphere mechanism is operating, allowed an estimate of the reduction potential of the couple HA[•]-HA⁻ (ca. 0.93 V).⁵

In the present study, there is an ambiguity in the assignment of the acid-dependent term since both paths (5) and (6) agree with the experimental dependence. If path (5) is the relevant one, a comparison with the activation parameters and rate constants of other systems, such as thioureas and catechols (with different structures and reduction potentials), suggests a substitution-controlled mechanism.¹¹ Also, in the reaction between ascorbic acid and CoIII, the acid-dependent path has been assigned to the interaction between the undissociated form of the organic substrate and the hydrolyzed metal-ion species, that is $[Co(OH)]^{2+}(aq).^{6}$ However, in previous kinetic studies the dependence on acidity has been attributed to the dissociated species of ascorbic acid (HA⁻).⁴ If path (6) is responsible for the reaction progress, $k_3 = 4.5 \times 10^8$ dm³ mol⁻¹ s⁻¹, and because this value exceeds the usually accepted rate of water exchange in the co-ordination sphere of $Mn^{3+}(aq)$,¹² an outer-sphere mechanism should be operating and equation (11) could be applied. For the HA'-HAcouple, values * of $E^{\circ} = 0.93$ V and $\Delta G_{11}^{\ddagger} = 4$ kcal mol^{-1} (that is *ca*. 10⁸ dm³ mol⁻¹ s⁻¹ for the self-exchange rate, similar to the exchange rates of other radicals with their parent molecules) 13 can be adopted; 5 for the $Mn^{3+}-Mn^{2+}$ a value of $E^{\circ} = 1.51$ V has been reported, while the self-exchange parameter is rather uncertain.¹⁴ If ΔG_{22}^{\ddagger} is derived from the reaction with [Fe^{II}L₃] (an outer-sphere reaction), a value of ca. 26 kcal mol⁻¹ is obtained [assuming $\Delta G^{\ddagger}~({\rm Fe^{III}L_3-Fe^{II}L_3})=4~{\rm kcal~mol^{-1}}$ and neglecting the work terms that in this case must be substantial]. This leads to a value of $k_3=2.2 imes10^4$ dm³ mol⁻¹ s⁻¹, that is four orders of magnitude lower than the experimental value. The possibility that a too large value for ΔG_{22}^{\ddagger} has been adopted must be taken into account, but only a value of $\Delta G_{22}^{\ddagger} = ca$. 14 kcal mol⁻¹ could justify the experimental findings; this value would in turn give dramatically high rates for Mn^{III}- $[Fe^{II}L_3]$ reactions, if equation (11) holds. In conclusion, (5) seems to be the major path of the acid-dependent reaction.

* Throughout this paper: 1 cal = 4.184 J.

12 A. McAuley and J. Hill, Quart. Rev., 1969, 23, 18.

The presence of an acid-independent path is rather unusual, although similar behaviour has also been observed in the oxidation by Co^{III} (ref. 6) and by [CoW₁₂O₄₀]^{5-.15} Also the oxidation by tris(5-nitro-1,10-phenanthroline)iron(III) can be interpreted in terms of a mechanism involving acid-independent and aciddependent paths.

The reaction rates of the paths involving Mn³⁺(aq) and Co³⁺(aq) with ascorbic acid in the form H₂A are similar to those observed in the oxidation of adrenaline with the same oxidants (Table 3).^{1a,b} However, the

TABLE 3

Comparison of kinetic data (dm³ mol⁻¹ s⁻¹) for the oxidation of ascorbic acid and benzenediols with different oxidizing agents

Oxidizing agent	Ascorbic " acid	Adrenaline	3,4-Di- hydroxy- benzonitrile
(In ³⁺ (aq)	$6.0~ imes~10^{3~b}$	$2.7~ imes~10^{3~c}$	
$Mn(OH)]^{2+}(aq)$	$5.3 imes10^{4}$ b	$2.0~ imes~10^{4}$ c	
$\cos^{3+}(aq)$	$2.8~ imes~10^{2}$ d	$1.6 imes 10^{2}$ e	ca. 15 °
Co(OH)] ²⁺ (aq)	$7.3~ imes~10^{5~d}$	$2.0~ imes~10^{5}$ e	$1.2~ imes~10^{5}$ e
$\operatorname{Fe(phen)}_{3}$] ^{3+f}	\leqslant 2 $ imes$ 10 ⁴ g	$1.1_5 imes10^{6~h}$	$1.2~ imes~10^{4}$ h
Fe(5Me-phen) ₃] ³⁺	\leqslant 3 $ imes$ 10 ³ g	$4.2~ imes~10^{5}$ h	$3.2~ imes~10^{3}$ h
$Fe(5NO_{3}-phen)_{3}^{3+f}$	$4~ imes~10^{6~g}$	$> 10^{7 h}$	$3.1~ imes~10^{6}$ h

^a The values refer to the reaction path involving the un-dissociated form of ascorbic acid. ^b This work. ^c Ref. 1b. ^d Ref. 6. ^e Ref. 1a. ^f phen = 1,10-Phenanthroline, 5Mephen = 5-methyl-1,10-phenanthroline, and $5NO_2$ -phen = 5-nitro-1,10-phenanthroline. g Ref. 5. h Ref. 2a.

reactivity of $[Fe^{III}L_3]$ toward H_2A and adrenaline differs by two orders of magnitude and the reaction rates toward H₂A are comparable with those of 3,4-dihydroxybenzonitrile (this suggests a reduction potential of ca. 1.3—1.4 V for the $H_2A^{+}-H_2A$ couple).^{2a} Since the reactions with $[Fe^{111}L_3]$ are outer-sphere electron transfers, a different mechanism is probably operating in the oxidations by $Mn^{3+}(aq)$ and $Co^{3+}(aq)$. Further work is necessary in order to test the validity of the present hypotheses.

We thank Drs. G. Davies and A. McAuley for providing the manuscripts of refs. 6 and 15 before publication.

[7/543 Received, 28th March, 1977]

¹³ D. Meisel, Chem. Phys. Letters, 1975, 34, 263; D. Meisel and R. W. Fessenden, *J. Amer. Chem. Soc.*, 1976, **98**, 7505; S. P. Sorensen and W. H. Bruning, *ibid.*, 1973, **95**, 2445. ¹⁴ H. Diebler and N. Sutin, *J. Phys. Chem.*, 1964, **68**, 174.

- ¹⁵ A. McAuley, personal communication.